Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Precise estimation of treatment effects is crucial for accurately evaluating the intervention. While deep learning models have exhibited promising performance in learning counterfactual representations for treatment effect estimation (TEE), a major limitation in most of these models is that they often overlook the diversity of treatment effects across potential subgroups that have varying treatment effects and characteristics, treating the entire population as a homogeneous group. This limitation restricts the ability to precisely estimate treatment effects and provide targeted treatment recommendations. In this paper, we propose a novel treatment effect estimation model, named SubgroupTE, which incorporates subgroup identification in TEE. SubgroupTE identifies heterogeneous subgroups with different responses and more precisely estimates treatment effects by considering subgroup-specific treatment effects in the estimation process. In addition, we introduce an expectation–maximization (EM)-based training process that iteratively optimizes estimation and subgrouping networks to improve both estimation and subgroup identification. Comprehensive experiments on the synthetic and semi-synthetic datasets demonstrate the outstanding performance of SubgroupTE compared to the existing works for treatment effect estimation and subgrouping models. Additionally, a real-world study demonstrates the capabilities of SubgroupTE in enhancing targeted treatment recommendations for patients with opioid use disorder (OUD) by incorporating subgroup identification with treatment effect estimation.more » « lessFree, publicly-accessible full text available March 19, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            The availability of large-scale electronic health record datasets has led to the development of artificial intel- ligence (AI) methods for clinical risk prediction that help improve patient care. However, existing studies have shown that AI models suffer from severe performance decay after several years of deployment, which might be caused by various temporal dataset shifts. When the shift occurs, we have access to large-scale pre-shift data and small-scale post-shift data that are not enough to train new models in the post-shift environment. In this study, we propose a new method to address the issue. We reweight patients from the pre-shift environ- ment to mitigate the distribution shift between pre- and post-shift environments. Moreover, we adopt a Kullback-Leibler divergence loss to force the models to learn similar patient representations in pre- and post-shift environments. Our experimental results show that our model efficiently mitigates temporal shifts, improving prediction performance.more » « less
- 
            Abstract—Sleep staging is a key challenge in diagnosing and treating sleep-related diseases due to its labor-intensive, time- consuming, costly, and error-prone. With the availability of large- scale sleep signal data, many deep learning methods are proposed for automatic sleep staging. However, these existing methods face several challenges including the heterogeneity of patients’ underlying health conditions and the difficulty modeling complex interactions between sleep stages. In this paper, we propose a neural network architecture named DREAM to tackle these is- sues for automatic sleep staging. DREAM consists of (i) a feature representation network that generates robust representations for sleep signals via the variational auto-encoder framework and contrastive learning and (ii) a sleep stage classification network that explicitly models the interactions between sleep stages in the sequential context at both feature representation and label classification levels via Transformer and conditional random field architectures. Our experimental results indicate that DREAM significantly outperforms existing methods for automatic sleep staging on three sleep signal datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
